Towards Training Stronger Video Vision Transformers for EPIC-KITCHENS-100 Action Recognition

Empirical results.


With the recent surge in the research of vision transformers, they have demonstrated remarkable potential for various challenging computer vision applications, such as image recognition, point cloud classification as well as video understanding. In this paper, we present empirical results for training a stronger video vision transformer on the EPIC-KITCHENS-100 Action Recognition dataset. Specifically, we explore training techniques for video vision transformers, such as augmentations, resolutions as well as initialization, etc. With our training recipe, a single ViViT model achieves the performance of 47.4% on the validation set of EPIC-KITCHENS-100 dataset, outperforming what is reported in the original paper by 3.4%. We found that video transformers are especially good at predicting the noun in the verb-noun action prediction task. This makes the overall action prediction accuracy of video transformers notably higher than convolutional ones. Surprisingly, even the best video transformers underperform the convolutional networks on the verb prediction. Therefore, we combine the video vision transformers and some of the convolutional video networks and present our solution to the EPIC-KITCHENS-100 Action Recognition competition.

In Eighth International Workshop on Egocentric Perception, Interaction and Computing, CVPR 2021